

5G Automotive Association, pioneering digital transformation in the automotive industry

Learn more at WWW.5GAA.ORG

Igniting the Connected and Automated Mobility Revolution: A Webinar Tailored for US Road Infrastructure Owner-Operators

Invitation for a discussion between 5GAA & US Road Infrastructure Owner-Operators on:

- ✓ What is C-V2X
- ✓ C-V2X is a superior technology
- ✓ C-V2X is available today
- ✓ C-V2X is increasingly being deployed

Agenda

Introduction

Dean Brenner Senior Vice President - Qualcomm & US Policy Task Force Vice-Chair – 5GAA

C-V2X Primer and Applications

John Roman, Director - Intel & Vice-Chair of Regulatory Affairs WG – 5GAA

Performance & Availability of C-V2X Today and 5G V2X Future

Jim Misener, Senior Director – Qualcomm & Board Member – 5GAA

Spectrum and Deployment

John Kwant, Global Director Ford, US Policy Task Force Chair – 5GAA

Q&A

About 5GAA

- The 5G Automotive Association (5GAA) is a global, cross-industry organization of companies from the automotive, technology, and telecommunications industries (ICT), working together to develop end-to-end solutions for future mobility and transportation services.
- 5GAA supports the idea that 5G will be the ultimate platform to enable C-ITS and the provision of V2X.
- Friends of 5GAA 5GAA is a membership structure designed specifically for the road infrastructure operators, known as Infrastructure Owner Operator (IOO) in the US, and road authorities community.

5GAA Members*

What is C-V2X (Cellular-Vehicle to Everything)?

C-V2X has two complementary communication modes

Direct (= Sidelink)

V2V, **V2I**, and **V2P** operating in ITS bands (e.g. ITS 5.9 GHz) independent of cellular network

Short range (<1/2 mile), location, speed Implemented over 3GPP's "PC5 interface"

Network (= Up/Downlink)

V2N operates in traditional mobile broadband licensed spectrum

Long range (>1/2 mile), e.g. accident ahead Implemented over "Uu interface"

Connected Vehicle Applications

- SPaT/MAP display of signal timing V2I
- Red-light running at traffic signals V2I
- Bus/transit priority V2I
- Intelligent school beacons V2I
- Emergency vehicle preemption– V2I
- Where is the emergency vehicle coming from? – V2V
- Motorist Cyclist communication V2V
- Motorist Pedestrian communication V2V
- Work zone warnings V2I
- Curve warning/reduce speed V2I

- Rear end collision warning V2V
- Virtual/advance traffic detectors V2I
- School Bus Active ahead warning V2V
- Railroad active ahead warning V2I
- Dynamic Message Sign (DMS) Annunciation – V2I
- Wrong way vehicle warning V2I
- Active Pedestrian in Crosswalk V2I
- Congestion Ahead Warning– V2I
- Weather Warning V2I
- Event Management Parking Information – V2I

5GAA field test measurements comparing LTE V2X and DSRC

From: <u>https://5gaa.org/wp-content/uploads/2018/11/5GAA_P-190033_V2X-Functional-and-Performance-Test-Report_final-1.pdf</u>

Obstructed Non-Line-of-Sight (NLOS) Range/Reliability Road Test in Fowlerville, Michigan

D > Range

Shadowing Test RESULTS

From: <u>https://5gaa.org/wp-content/uploads/2018/11/5GAA_P-190033_V2X-Functional-and-Performance-Test-</u> <u>Report_final-1.pdf</u>

5GAA shadowing test, Approach DSRC 5dBm DSRC 11dBm CV2X 5dBm CV2X 11dBm Received Percent Distance (m)

• CV2X outperforms 802.11p in shadowing scenarios.

Technology benchmark summary

Congestion	Lab Cabled Congestion Control	Pass
Reliability	Lab and Field Cabled Tx and Rx Tests, Line-of-Sight and non- Line-of-Sight Range Tests	CV2X better
Interference	Lab Cabled Test with Simulated Co-channel Interference	CV2X better
	Lab Cabled Near-Far Test	Pass
	Field Co-existence with Wi-Fi 80 MHz Bandwidth in UNII-3	CV2X better
	Field Co-existing of V2X with Adjacent DSRC Carrier	Pass

CAMP Cellular V2X Device-to-Device Communication Project:

https://pronto-core-cdn.prontomarketing.com/2/wp-content/uploads/sites/2896/2020/02/CAMP-CV2X_SAE_01152020_v2.pdf

Addressed Lab Characterization, On-Road Performance and Scalability (260 equivalent cars)

C-V2X radio technology consistently outperforms DSRC.

	Commercially Available Products:
	Roadside Units (RSU) and OnBoard Units (OBU)
Applied	AI-500-065-02 C-V2X Aftermarket OBU
Information	AI-500-095 C-V2X Roadside Unit (RSU)
Cohda Wireless	<u>C-V2X Kit</u>
Commeignie	C-V2X Roadside Unit (RSU)
Commisignia	<u>C-V2X On Board Unit (OBU)</u>
Danlaw	C-V2X Aftermarket OBU
Ficosa	<u>Carcom – FITAX OBU</u>
iSmartways	MOCAR V-MASTER OBU
Technology	MOCAR I-MASTER RSU
Kapsch	RIS 9260: C-V2X Roadside Unit (OBU)
Savari	StreetWAVE 2000 RSU

	Commercially Available Wireless Modules	
	(component-level solutions)	
LG Innotek	LAM-V500 : C-V2X Module	
Quectel	AG15 : C-V2X Module	
SIMCOM	SIM8100 : C-V2X Module	
Telit	VE915C1 C-V2X Module	
	CV2X Module & PCIe MiniCard	
WINC	<u>EVK – RR3 C-V2X Platform</u>	
ZTE	ZM8350 : C-V2X Module	

C-V2X evolution roadmap towards 5G

Since 2016	As of 2020/2021	As of 2024/2025
Traffic Efficiency 4G/LTE (network-only)	Basic & Enhanced Safety LTE-V2X (+ direct short-range)	Autonomous Driving 5G-V2X enhancing ADAS
 Only using mobile networks (V2N) +20 million EU connected cars* Local Hazard Warning Traffic Info (in some markets) 	 Short-range communications (V2V/V2I) China first-mover: 13 OEMs (2020/2021) US deployment announced 2022 (Ford) Audi US initial deployment Q3/2020 	Direct short-range + network communications Backward compatible with LTE-V2X Ultra-reliable at low latency (<1 millisecond) Almost unlimited data exchange
Road hazard warning 1 km ahead	Do not pass warning (DNPW)	Sudden braking and lane change on a freeway
* Services provided depend on the OEM	Intersection movement assist (IMA) at a blind intersection	

NR C-V2X builds on LTE C-V2X

with advanced use cases

5G V2X sidelink

The Journey Towards 5G

Should be notified, but does not get signal

Uniform coverage by adding distance as a dimension

Location information shared efficiently in the physical layer control channel

Groups can reliably connect based on distance

Vehicles within a certain distance and interested in same services form an 'on-the-fly' group

Global Stakeholders Are Increasingly Recognizing the Benefits of C-V2X

United States

- 2019 5.9 GHz spectrum regulations allow only DSRC
- 2020 FCC NPRM that include C-V2X in 5.9 GHz spectrum

Europe

2019 – Supermajority of EU States rejected the Delegated Regulation on Cooperative Intelligent Transport Systems (C-ITS), which would have established DSRC as the preferred V2X technology.

China

- 2018 Adopted allocation (5905-5925 MHz) for C-V2X.
- 2020 Planned deployment of C-V2X-equipped vehicles

5GAA Positions on FCC NPRM

Support

- Rulemaking to Modernize the 5.9 GHz Band
- Designation of Upper 20 MHz for C-V2X

Oppose

- Insufficient Bandwidth for Advanced C-V2X
 - Threatens America's Leadership in Connected and Autonomous Vehicles
- Inadequate Interference Protections for Basic C-V2X
 - Would Render Basic C-V2X Ineffective

Q&A Session

Automotive Association

Thank you for joining!

For more information please contact: liaison@5gaa.org

Back Up Slides

Timeline for deployment of V2X Use Cases

