

V2X Technology Functional and Performance Benchmark Testing Key Findings October 2018

Read full report here

Technology Performance Characterization Approach

- Provision for interchangeable DSRC and C-V2X systems.
- Technology agnostic capability assessment procedures documented and harmonized in 5GAA for global consistency.
- Tests conducted with scrupulous control of factors influencing radio wave propagation to ensure fair comparison:
 - Antenna characteristics and placement
 - Vehicle geometry and cabling
 - Location and environmental conditions
 - Power, interference and other settings

Performance Characterization

Ford and Qualcomm conducted testing to compare radio performance of CV2X and DSRC in Ann Arbor and San Diego. Key tests performed:

Congestion	Lab Cabled Congestion Control
Reliability	Lab Cabled Tx and Rx Tests
	Field Line-of-Sight (LOS) Range Tests
	Field Non-Line-of-Sight (NLOS) Range Tests
Interference	Lab Cabled Test with Simulated Co-channel Interference
	Lab Cabled Near-Far Test
	Field Co-existence with Wi-Fi 80 MHz Bandwidth in UNII-3
	Field Co-existing of C-V2X with Adjacent DSRC Carrier

Congestion Lab Test

Purpose:

Assess CV2X ability to manage congestion per SAE 2945/1.

Packet error rate remains below 10% while CBR is ~30% with congestion management.

Cabled Radio Lab Test

Purpose:

Measure radio performance under varying receive power conditions.

CV2X outperforms DSRC consistent with simulations.

Line-of-Sight Field Test

Purpose:

Assess baseline capability for V2V message exchange in line of sight (LOS).

<u>Note</u>: Equivalent transmit power was set at 11dBm for both DSRC and CV2X to fit measured range into the test track (1350m long) and to match the setting in previous tests by the industry.

Line-of-Sight Field Test Results

Stationary vehicle receiving Moving vehicle transmitting and approaching Stationary vehicle transmitting Moving vehicle approaching and receiving

Significant baseline performance advantage consistent with Lab results.

Intersection Test (Obstructed view)

Intersection Test Results

Stationary vehicle receiving Moving vehicle transmitting and approaching Stationary vehicle transmitting Moving vehicle approaching and receiving

Significant performance advantage in obstructed view intersection.

5GAA Shadowing Test

Purpose:

Assess capability for V2V message exchange in non-line of sight (NLOS) scenario with significant obstruction.

<u>Note</u>: The blocker is positioned in front of the stationary vehicle in order to create a significant (and constant) line of sight obstruction. **The Stationary Vehicle and Blocker remain motionless during the entire test**.

CAMP Shadowing Test

Purpose:

Assess V2V message exchange capability through obstruction in a

highway queue-forming scenario.

<u>Note</u>: In this test **the effect of the blocker is negligible at maximum vehicle separation** (obstruction appears very small to the SV). As a result, the test <u>will produce better range</u> than the more demanding 5GAA shadowing test <u>regardless of technology</u>.

Shadowing Test results

5GAA shadowing test is more demanding than the CAMP test. CV2X outperforms DSRC in shadowing scenarios by large margin.

Line-of-sight UNII-3 Out-of-band Interference Test *Purpose*: U-NII-3 WiFi Assess capability to resist out-of-band interference. hot-spot Hot-spot U-turn at the end ----of the test track D 13m START **ITS Band CH155** Value Parameter 5850 **Tx Power** 23 dBm 80 MHz 592! Utilization 76% 40MHz 5,860MHz 5,775MHz Both OBUs were operating in CH184 and the interferer was shifted from center frequency 5,775MHz to 5,835MHz 13

Line-of-sight UNII-3 Out-of-band Interference Test: Results

WiFi hot spot: ON

WiFi hot spot: OFF

Moving vehicle transmitting and approaching, Stationary vehicle receiving

CV2X is more resilient to UNII-3 interference than DSRC.

Latency Lab Results

Purpose:

Measure end-to-end latency at PRR > 90% in various lab tests.

Test	Technology	95%-ile IPG (ms)	95%-ile latency (ms)
Cabled Tx/Rx	CV2X	106	22* (with 20ms latency budget)
	DSRC	104	20
Congestion	CV2X	105	99* (with 100ms latency budget)

*In C-V2X, latency budget can be configured based on the application/situational need. The latencies remain bounded by the configured budget independent of the level of congestion.

Both CV2X and DSRC satisfy SAE J2945/1 requirements.

Technology benchmark summary

Congestion	Lab Cabled Congestion Control	Pass
Reliability	Lab Cabled Tx and Rx Tests	CV2X better
	Field Line-of-Sight (LOS) Range Tests	CV2X better
	Field Non-Line-of-Sight (NLOS) Range Tests	CV2X better
Interference	Lab Cabled Test with Simulated Co-channel Interference	CV2X better
	Lab Cabled Near-Far Test	Pass
	Field Co-existence with Wi-Fi 80 MHz Bandwidth in UNII-3	CV2X better
	Field Co-existing of V2X with Adjacent DSRC Carrier	Pass

CV2X radio technology consistently outperforms DSRC.

Field results summary

Test Procedure	Range at 90% Reliability		
	DSRC	CV2X	
Line-of-Sight (LOS) Range	675m	1175m	
Non-Line-of-Sight (NLOS) Blocker (5GAA)	125m	425m	
Non-Line-of-Sight (NLOS) Blocker (CAMP)	400m (200m) ¹	>1350m (625m)	
Non-Line-of-Sight (NLOS) Intersection	375m	875m	
Co-existence with Wi-Fi 80 MHz Bandwidth in UNII-3	300m (75m)	625m	
Co-existing of V2X with Adjacent DSRC Carrier	400m (100m)	1050m	

CV2X radio technology consistently outperforms DSRC.

¹ Number in parenthesis indicate first drop below 90% reliability

BMW, Ford, PSA, Qualcomm CV2X demonstration in Paris, France, July 2018. Click Here For More

Appendix

Cabled Near-Far Test

Purpose: Assess half-duplex C-V2X capability.

Attenuator Value (dB)	No. of Transmitted pkts		No. of Received pkts		PER % Calculated at Receiver (Device 3)	
	(total for the 10 min test)		(total for the 10 min test)			
	Transmit Device 1	Transmit Device 2	Received at Device 3 from Device 1	Received at Device 3 from Device 2	For Packets from Device 1	For Packets from Device 2
39	6000	6000	6000	6000	0.00	0.00
49	6000	6000	6000	6000	0.00	0.00
59	6000	6000	6000	6000	0.00	0.00
69	6000	6000	6000	6000	0.00	0.00
71	6000	6000	6000	6000	0.00	0.00
72	6000	6000	6000	5996	0.00	0.07
73	6000	6000	6000	5918	0.00	1.37
74	6000	6000	6000	5675	0.00	5.42
75	6000	6000	6000	4475	0.00	25.42
76	6000	6000	6000	2501	0.00	58.32
77	6000	6000	6000	699	0.00	88.35
78	6000	6000	6000	16	0.00	99.73
Device 1 TX Power (dBm)		21 dBm				
Device 2 TX Power (dBm)		21 dBm				

C-V2X copes well with transmissions in same time slot, different frequency.

Line-of-sight Adjacent Channel Interference Test

Line-of-sight Adjacent Channel Interference Test Results

Interference vehicle: OFF

Interference vehicle : Transmitting

Moving vehicle transmitting and approaching, Stationary vehicle receiving

CV2X is more resilient to adjacent channel V2X interference than DSRC.

CAMP Shadowing Test Results (21 dBm)

Range for both technologies exceeds 1.4km at higher power Drop in PRR consistent for both technologies

