

An assessment of LTE-V2X (PC5) and 802.11p direct communications technologies for improved road safety in the EU

A study by the 5GAA

Cellular-V2X Technology: Paving the road to 5G, delivering for connected and automated vehicles in Europe

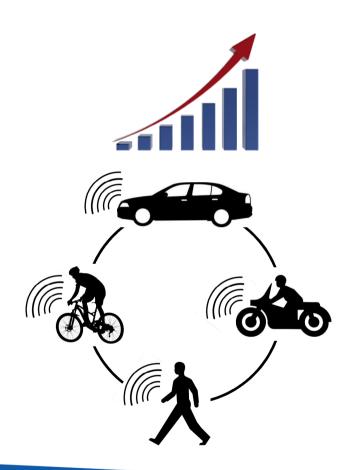
Brussels 5 December 2017

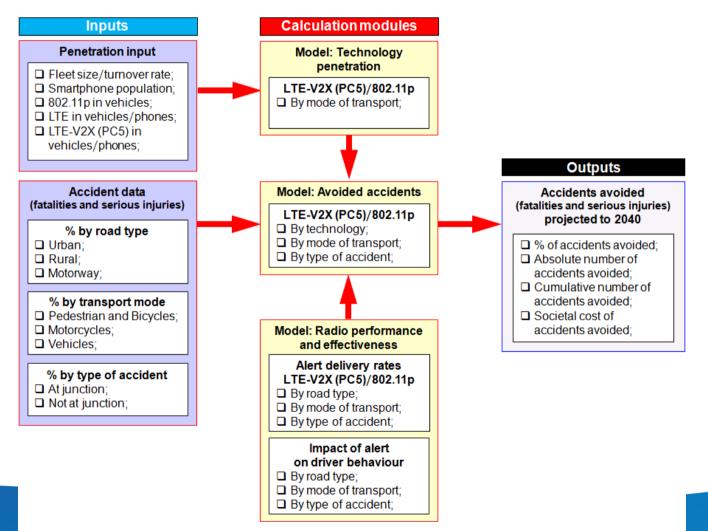
1

Introduction to the study¹

- A quantitative analysis of 3GPP LTE-V2X (PC5) and IEEE 802.11p technologies for short-range ad hoc/direct communications in reducing fatalities and serious injuries caused by motoring accidents in the EU.
- Additional reductions in fatalities and serious injuries are possible via longer-range communications enabled through interactions with a LTE cellular network. But these are outside the scope of this study.
- Modelling underlying this report has been peer-reviewed and validated in detail by the technology and policy consultancy, Ricardo.

1 The report: "An assessment of LTE-V2X (PC5) and 802.11p direct communications technologies for improved road safety in the EU", 5 December 2017, is available at: www.5gaa.org.

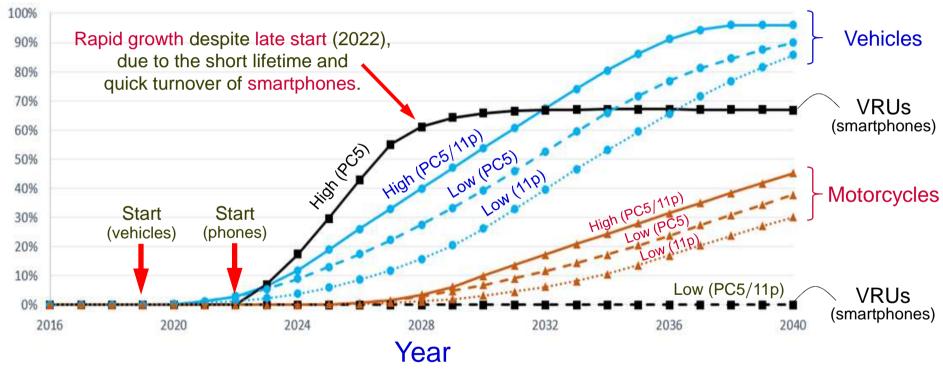



Study framework

- Study examines two independent counter-factual scenarios: one where LTE-V2X (PC5) is the only deployed C-ITS technology, and the other where 802.11p is the only deployed C-ITS technology.
- ❑ We consider, as a baseline, the existing and future projected statistics for road traffic fatalities/injuries in the EU. We then evaluate the reduction in fatalities/injuries which may occur by modelling
 - expected take-up of LTE-V2X (PC5) and 802.11p among road users over time (including vehicles, motorcycles, bicycles and pedestrians), and
 - ➤ radio link performance of LTE-V2X (PC5) and 802.11p.

Study framework

Baseline: Fatalities/injuries in the EU


Number of fatalities 50,000 Statistics released by the European 40,000 Commission (Eurostat, CARE data) 30,000 Extension: 12 serious injuries per fatality. 20,000 Extrapolation Fatalities due to single vehicle 10,000 collisions (SVCs) are removed. 0 2005 2010 2015 2020 2025 2030 2035 2040 Year

Note: Baseline does not account for impact of long-range cellular communications (or technologies other than C-ITS), in reducing the number of accidents. For this reason, the results of this study are an upper bound on number of accidents avoided.

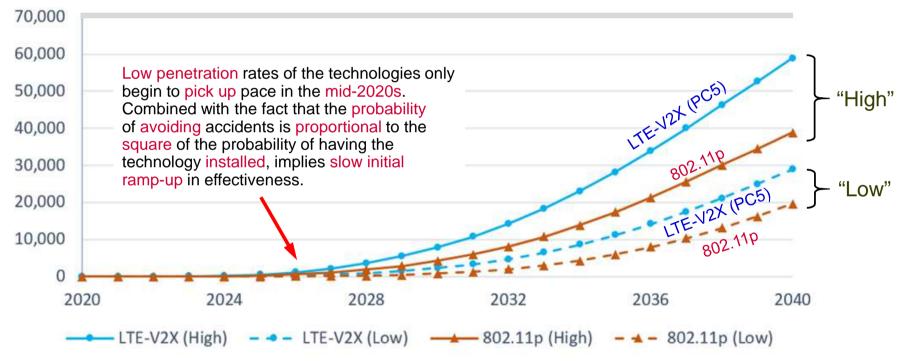
Technology penetration: High/low scenarios

Penetration of LTE-V2X (PC5) and 802.11p

"High" scenario: Assumed aggressive deployment. "Low" scenario: More pessimistic deployment based on literature.

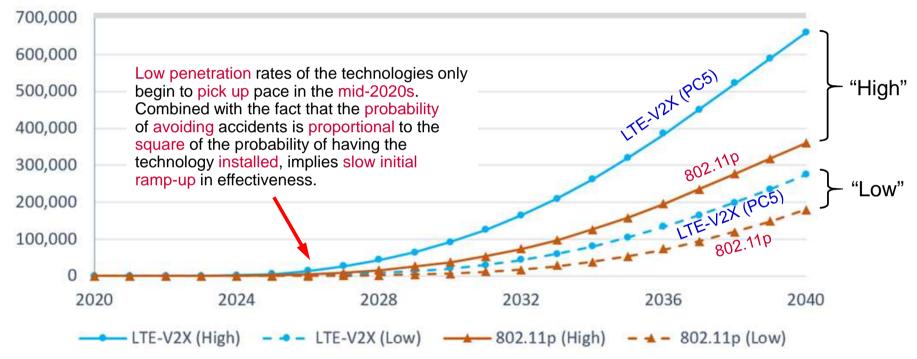
Radio link performance: Alert delivery reliability

LTE-V2X (PC5) [802.11p]	At junction			Not at junction		
Vehicle to	Urban	Rural	Motorway	Urban	Rural	Motorway
pedestrian	96%	67%	N/A	88%	98%	97%
or bicycle	[78%]	[59%]		[75%]	[97%]	[63%]
vehicle or	96%	83%	N/A	96%	99%	94%
motorcycle	[78%]	[66%]		[81%]	[98%]	[86%]


□ Likelihood of successful delivery of warning messages between two road users equipped with LTE-V2X (PC5) is greater than it is for two road users equipped with 802.11p.

LTE-V2X (PC5) has greater transmit power spectral density (frequency-domain multiplexing), more power-efficient SC-FDM waveform, better (Turbo) channel coding gain, physical layer packet re-transmissions, and better (deterministic) management of radio resources.

Cumulative statistics: Fatalities


Fatalities avoided (cumulative)

Cumulative statistics: Serious injuries

Serious injuries avoided (cumulative)

Summary

Time-frame: 2018-2040	Avoided	fatalities	Avoided serious injuries		
	High	Low	High	Low	
LTE-V2X (PC5)	59,000	29,000	660,000	275,000	
802.11p	39,000	20,000	360,000	180,000	

Deployment of LTE-V2X (PC5) would avoid greater numbers of fatalities and serious injuries on the EU's roads than would be the case for 802.11p.

□ Expressed in terms of external costs avoided, this amounts to total avoided costs of €61 billion and €22 billion for LTE-V2X (PC5) compared to 802.11p in the "high" and "low" scenarios, respectively.

Even the "low" 802.11p penetration is expected to be overly optimistic: at the time of writing only one European car vendor has announced an intention to deploy 802.11p, expected in 2019. Whereas, the "low" LTE-V2X (PC5) penetration is based on ongoing growth of LTE modems in vehicles (for telematics/infotainment), and what we consider to be a realistic future projection of PC5 functionality in such LTE modems.

Conclusions and recommendations (1/2)

- An absence of interoperability at radio link level between LTE-V2X (PC5) and 802.11p is unlikely to present a substantive barrier to reduction of road accidents in the EU in the short to medium term.
- This is because the relatively low penetration of C-ITS technologies in vehicles in the first half of the next decade means that a vehicle equipped with LTE-V2X (PC5) or 802.11p is far more likely to collide with a vehicle that is not equipped with C-ITS technologies at all.
- Any regulations which mandate LTE-V2X (PC5) to be backward interoperable with 802.11p will
 - have only a limited effect in the early years of deployment pre-2025;
 - run the risk of unnecessarily distorting the market in favour of 802.11p, thereby obstructing the adoption of LTE-V2X (PC5);

resulting in greater road fatalities and injuries in the longer term.

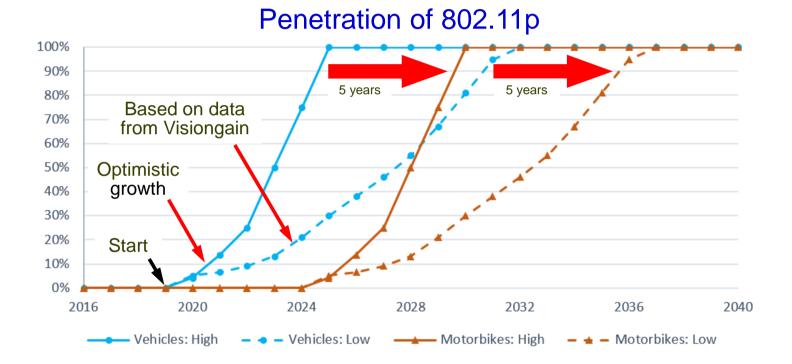
Conclusions and recommendations (2/2)

- □ The study indicates that LTE-V2X (PC5) outperforms 802.11p in reducing fatalities and serious injuries on the EU's roads.
- This is due to a combination of the superior performance of LTE-V2X (PC5) at the radio link level for ad hoc/direct communications between road users, and the market led conditions which better favour the deployment of LTE-V2X in vehicles and in smartphones, and include a clear evolutionary path towards 5G-V2X.
- For these reasons, it is essential that EU regulations remain technology neutral and do not hinder the deployment of LTE-V2X (PC5) in favour of 802.11p for the provision of direct communications among vehicles and between vehicles and vulnerable road users.

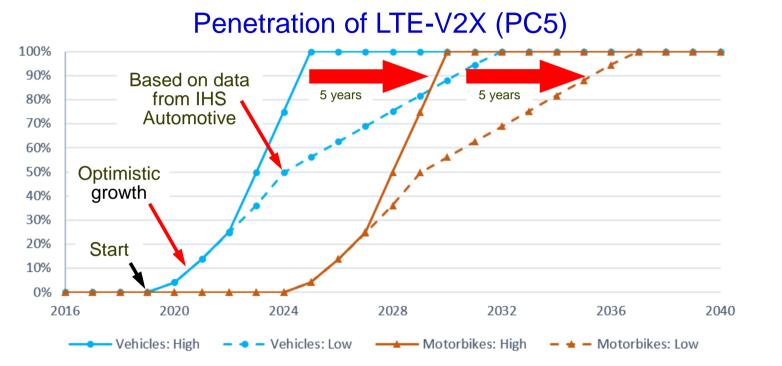
Thank you www.5gaa.org

Breakdown by mode of transport

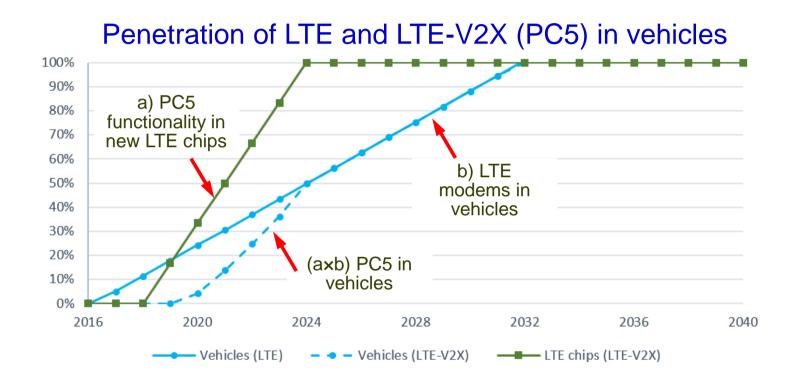
LTE-V2X (PC5)	Fatalities		Serious injuries		
2018 - 2040	High	Low	High	Low	
Pedestrians	12,700	N/A	164,828	N/A	
Bicycles	5,014	N/A	102,159	N/A	
Motorcycles	3,854	2,567	59,477	39,611	
Vehicles	37,353	26,403	333,449	235,704	
Total	58,921	28,970	659,913	275,315	


802.11p	Fatalities		Serious injuries		
2018 - 2040	High	Low	High	Low	
Pedestrians	N/A	N/A	N/A	N/A	
Bicycles	N/A	N/A	N/A	N/A	
Motorcycles	3,569	1,504	53,462	22,534	
Vehicles	35,318	18,105	307,013	157,385	
Total	38,887	19,609	360,474	179,918	

802.11p in new vehicles/motorcycles

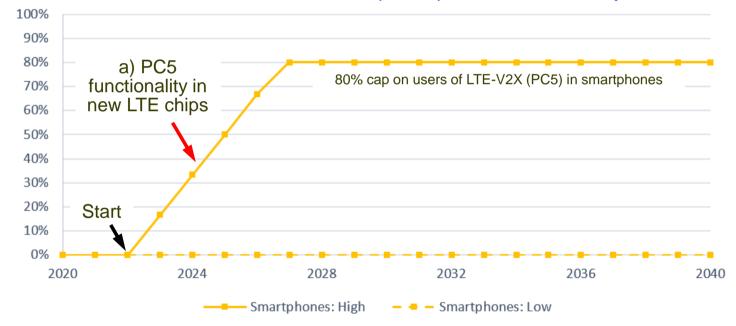


LTE-V2X (PC5) in new vehicles/motorcycles

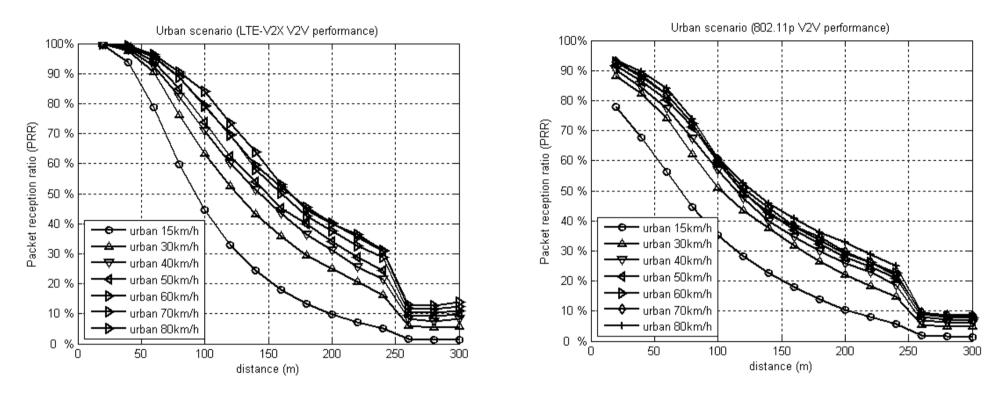


17

Derivation of LTE-V2X (PC5) low scenario



LTE-V2X (PC5) in new smartphones



Penetration of LTE-V2X (PC5) in new smartphones

Radio link performance

For each scenario, the range of assumed road user speeds maps to a corresponding range of alert delivery reliability rates. The *average* reliability rate over this range is then calculated as the alert delivery reliability associated with the said scenario.

