

### The C-V2X Proposition

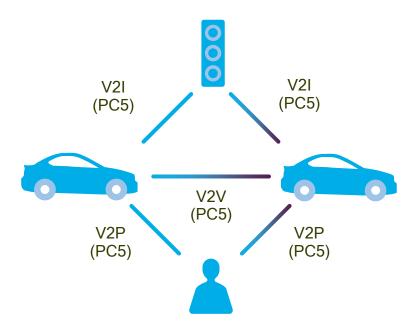
Jovan ∠agajac
Ford Motor Company
Washington DC
April 26, 2018

### My job @ Ford





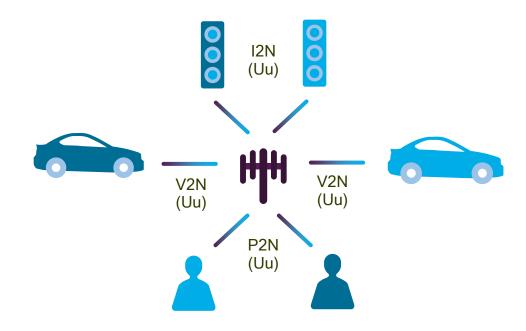
### Important cellular radio technology enhancements were codified in Release 14 of 3GPP (2017)


| Before                                                              | Now                                                                              |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Devices using cellular technology required infrastructure support.  | Cellular V2X devices can communicate directly without any network support.       |
| Low latency communication was not possible with cellular solutions. | Cellular V2X technology supports low-latency needs for V2V.                      |
| Cellular solutions required use of (costly) licensed spectrum.      | Cellular V2X technology can operate in the ITS 5.9Ghz band.                      |
| Cellular solutions lacked mechanisms to address privacy issues.     | Cellular V2X operates w/out SIM cards and enables anonymity on par to DSRC       |
| DSRC was the only technology available to support V2V.              | Cellular technology is a viable alternative to meet and exceed V2V requirements. |



#### C-V2X has two complementary communication modes

#### **Direct**


V2V, V2I, and V2P operating in ITS bands (e.g. ITS 5.9 GHz) independent of cellular network



Short range (<1 kilometer), location, speed ...
Implemented over "PC5 interface"

#### **Network**

**V2N** operates in traditional mobile broadband licensed spectrum



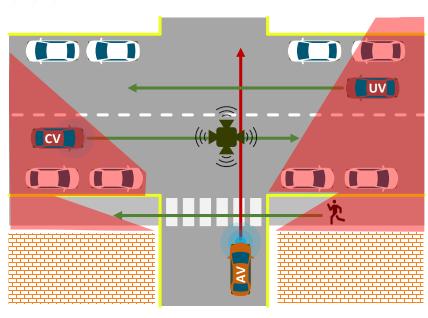
Long range (>1 kilometers). e.g. accident ahead Implemented over "Uu interface"



### Why is this important?

- **A. Performance**: C-V2X delivers superior performance and reliability by leveraging the latest advances in radio technology
- **B.** Implementation Efficiency: C-V2X can be implemented by utilizing the cellular technology platforms that automakers are already deploying
  - Analysts expect that 90% of new US vehicles will have cellular modems by 2025
  - In the US, by 2019 100% of new Ford vehicles will have cellular modems
  - Integration with existing in-vehicle cellular platforms and services will results in fewer things-gone-wrong at a lower expected cost
- C. Readiness: Commercial C-V2X products are available for deployment as early as 2019
  - supported by a broad ecosystem reflected in the diversity of 5GAA membership




### Why is this important?

- **D.** Reuse: C-V2X leverages a very significant portion of the V2X work already done
  - Benefits from existing V2X transport layers and application protocols: safety Apps developed for DSRC will work unchanged with CV2X radios
  - Learnings from past V2X research are reusable
- E. Global Footprint: C-V2X will be deployed consistently and predictably across the world in the same way that other cellular technologies such as LTE have been
- **F. Evolution**: C-V2X is the first step towards 5G that will leverage future improvements in cellular radio technology while remaining backward compatible



## C-V2X is the first step towards 5G that can leverage future improvements in cellular radio technology.

- Basic safety messaging
- Dual (direct and network) support



- Backward compatible
- HD sensor and intent sharing



### Key Cellular-V2X Technical Characteristics

- **A. Low-latency**: C-V2X is designed for reliable, predictable, low-latency direct communications
- **B. Network independence:** "Direct" C-V2X is designed to operate without network assistance (does not require SIM cards to function) but can use the deployed mobile networks to enhance functionality
- **C. High-speed use cases**: C-V2X is designed for high-speed vehicular use cases. By design and following extensive analyses R14 C-V2X works up to 500 km/h relative Doppler in 5.9 GHz band
- **D. ITS spectrum**: C-V2X is designed to operate in the ITS spectrum
- **E. Security**: Benefits from established security protocols defined by the automotive standards communities, including SAE, IEEE and ETSI.

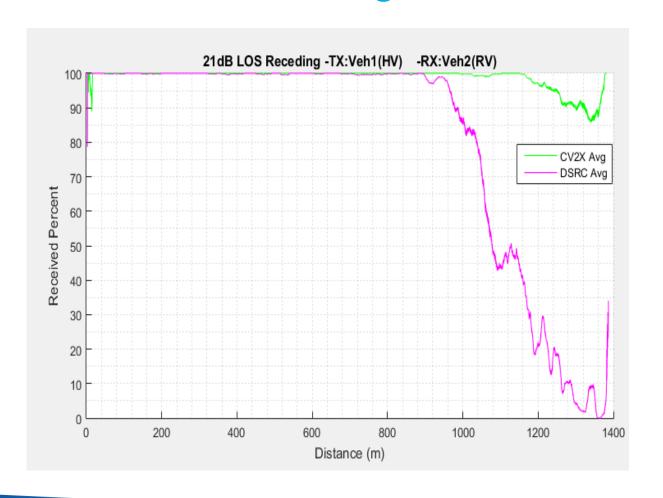


# Extensive testing to validate CV2X radio performance initiated in 2017 will be completed by this summer in Ann Arbor, San Diego, Aberdeen and Shanghai.

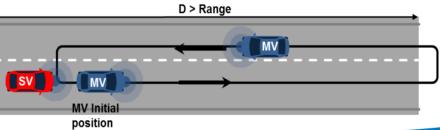
|              | Lab Cabled Tx and Rx Tests                                              |
|--------------|-------------------------------------------------------------------------|
| Range        | Field LOS Range Tests                                                   |
|              | Field NLOS Range Tests                                                  |
| Interference | Lab Cabled Tx and Rx Test with Simulated External Interference          |
|              | Lab Cabled Near-Far Test                                                |
|              | Field Co-existence with Wi-Fi 80 MHz Bandwidth in UNII-3                |
|              | Field Co-existing of C-V2X with Adjacent DSRC Carrier (CH172 and CH174) |
| Congestion   | Lab Cabled Congestion Control                                           |
|              | Field Congestion Control Field Test: Multi-Lane Line-of-Sight Highway   |



### **Testing**

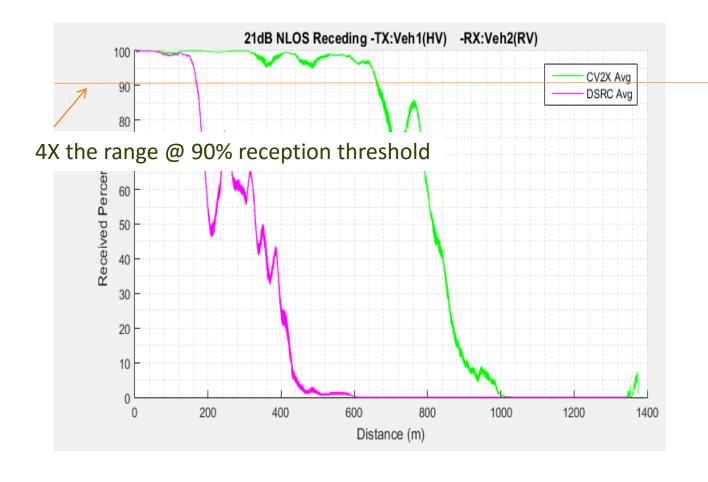

- Ford in partnership with Qualcomm (in US) and Datang (in China) has been testing C-V2X devices since 2H17.
   Work will be completed in 2H18.
- Test procedures have been documented and are now being harmonized in 5GAA to ensure global uniformity.
- Initial results are consistent and very encouraging. They support our beliefs in the benefits of the technology.



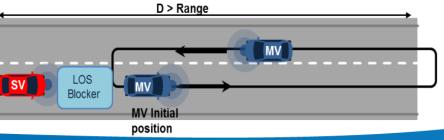





# Line-of-Sight (LOS) Range / Reliability Road Test in Fowlerville, Michigan



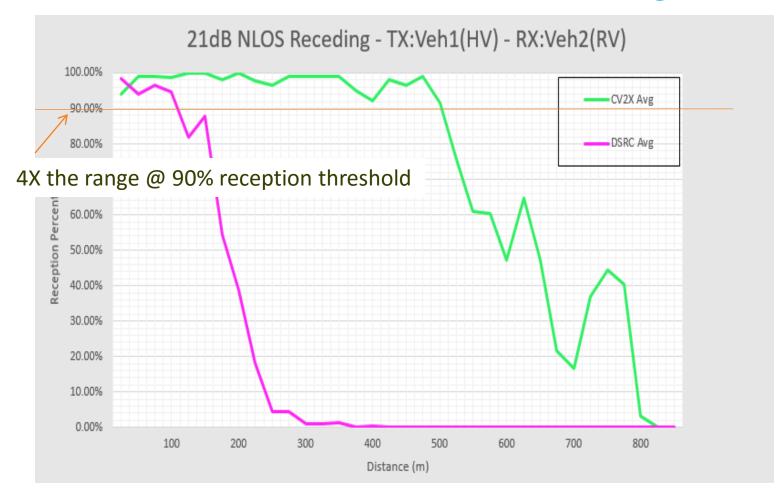


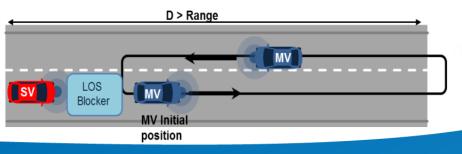



Obstructed Non-Line-of-Sight (NLOS) Range/Reliability Road Test in Fowlerville, Michigan





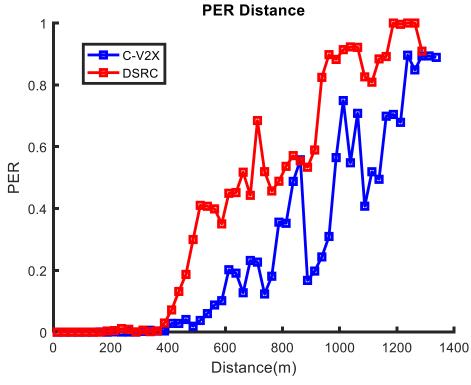



Obstructed Non-Line-of-Sight (NLOS) Range/Reliability

Road Test in Miramar, San Diego










### Highway Testing Near Beijing





- Vehicles driven at 80 km/h, 100 km/h and 120 km/h
- Both cars slowly separating until no packet received, then closing gap, three times
- Distance maintained at 200m, 400m, 600m etc. for 5 min





### Thank You!