

#### **Orange Key Figures** IoT Connectivity for Automotive

| €41 billion<br>in revenue in 2017                                            | 7                           | 16<br>million<br>connected<br>objects       | 152,000<br>employees           | 220 countries<br>where Orange Bus<br>Services is preser | siness<br>ht                        | 21,000<br>collaborators<br>dedicated<br>to corporate<br>activities    |
|------------------------------------------------------------------------------|-----------------------------|---------------------------------------------|--------------------------------|---------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------|
| 450,000 km<br>of undersea cable<br>enough to go around<br>the earth 10 times | is                          | 45%<br>M2M SIMs<br>are in connected<br>cars |                                |                                                         |                                     | 29 local<br>networks<br>in Europe<br>and Africa                       |
| 4G in 18<br>countries                                                        | 500+<br>roaming<br>networks | 700<br>IoT and<br>Big Data experts          | 273m<br>customers<br>worldwide | 1,600<br>Cloud<br>Experts                               | 1,200<br>Cyber- Security<br>experts | 182<br>Start-ups<br>supported as<br>part of the Orange<br>Fab program |

Orange Business Services IoT for Automotive

**Orange IoT for Automotive Our Vision for Mobility as a Service** 

Powering the connected vehicles of the future:



# Wide Scope of Automotive Use Cases... ...Requiring Evolutive ITS Ecosystem

| ITS service | Road Safety                                                                                              | Traffic Efficicency                            | Comfort/Mobility                    |
|-------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------|
|             | Danger warning on the road (vehicle stopped, vehicle in reverse, emergency braking, red light violation) | Dynamic information of road traffic            | Multimodal Trabsport                |
|             | Collision avoidance (risk of intersection or longitudinal collision)                                     | Contextual speed                               | Interactive POI (point of interest) |
|             | Vulnerable User Protection                                                                               | On board vehicle display                       | audio/video streaming               |
|             | CACC (cooperative assisted cruise control) platooning                                                    | Real time guiding                              | Fletet management                   |
|             | EB (Emergency Breaking )                                                                                 | Traffic jam/information about alternative road | Smart cities services               |
|             | See through, bird's eye view                                                                             | Road works                                     | electro mobility                    |
|             | Police signaling, firefighters and ambulances in emergency response                                      | EV charging                                    | ebusiness services                  |
|             | Telediagnostics and remote maintenance for vehicles (real time / non real time)                          | Traffic Map (Dynamic Local mapping)            | Public transportation services      |
|             | Lane insertion assistance, automated overtaking                                                          | GLOSA (green light optimal speed advice)       | Interactive and cooperative parking |

#### Orange Business Services IoT for Automotive

#### **French Framework for Autonomous and Connected Vehicles** Strategic Directions for Public Action (by Anne-Marie IDRAC)

Source: Report of 05/14/2018 on « Development of Autonomous Vehicles »



# How a MNO Can Help the ITS Ecosystem ... ...to Emerge in the Future

#### LTE-based V2N already covers many use cases

- > Traffic information, notifications, incremental map updates, OTA firmware updates
- Wide expanding coverage

## V2V and V2I will rollout in the coming years

- Low range and / or low latency use cases
- also available outside cellular coverage

# Leverage on existing and future 4G/5G V2N evolutions to complement V2V /V2I and address most (all ?) of the use cases

- > C-V2X as a promising enabler to make the « glue » between V2N and V2V/V2I
- leveraging on V2X evolutions brought by 5G : <u>incremental</u> approach from 4G to 5G, network slicing

## **Testing 5G Network Technologies for V2N Use Cases & Applications** V2N / V2V Complementarity: « See Through » Example (V2N2V)

Experimentation performed on the French test track: partnership between Orange and Ericsson

#### Use case

see through, an overtake assistant based on real time high definition video transmission

#### **Network configuration**

Slice 1: uRLLC in local breakout for see through Slice 2: Mobile broadband background traffic



## **Network Performances in V2N2V** Throughput & Latency per Slice



orande

## **Network Performances in V2N2V** Some Results for Latency & Throughput in V2N2V

#### Measurements of latency and throughput in V2N2V communications

Average V2N2V latency of 17ms and downlink throughput of 100Mbps (cat. 3 UE)





V2N2V latency versus elapsed time

3D curve for V2N downlink throughput

#### **Main Outcomes & Stakes**

# V2N Augmenting and Complementing V2V and V2I

#### **Main Outcomes**

- Network Functions Virtualization provides flexibility and enables edge deployment
- Split of data and control plane with local breakout reduces the delay
- Network slicing brings advanced QoS in the management of the differentiated traffic

#### What's at stake?

- QoS preservation for demanding automotive use cases
- Interworking in roaming conditions with standardized architectures
- Integration/Cooperation of C-V2X ecosystem with MNO Infrastructure



## Next Steps (2/2):

orange

- Continue the work with telecom & automotive regulatory bodies, automotive industry, road operators and telecom industry in order to co-build the most suitable conditions for C-ITS
  - Technology neutrality in the 5,9 GHz band is a good approach to take into account current incertainties on business models
  - Actors'models need to be further discussed/tested among all interested parties
- Understand how V2N and MNO infrastructures can efficiently help ITS ecosystem



#### Next Steps (2/2):

#### Evaluation of C-V2X ecosystem:

- Connectivity, Security and Services
- Contribute and disseminate results of European Projects such as 5G Car (end by mid-2019)
- Cooperation (OEMs, Tiers-1, SOC makers) for the testing and the deployment of V2X scenarii and autonomous driving in a realistic managed environment such as CEVA (Centre d'Essai pour Véhicules Autonomes) at Montlhéry
- Assess the opportunity of field trials in public domain for advanced V2X scenarii

