Context for the study

Research findings

Cost–benefit analysis

Results

About Analysys Mason and SBD Automotive
The purpose of the study was to assess the socio-economic benefits of C-V2X

- Vehicle to everything (V2X) will enable communication between vehicles (V2V), and between vehicles and infrastructure (V2I):
 - potential to provide enhanced information, complementing on-board sensors, enabling operation over a longer range

- C-V2X is designed to deliver V2X, with two modes of communication:
 - a direct vehicle-to-vehicle mode (‘PC5’), for V2V/V2I
 - a network communications interface, for vehicle-to-network (V2N) communication via mobile networks (‘Uu’)

- A short-range technology, IEEE 802.11p, is also designed to offer V2V/V2I services

- We were asked to examine qualitative evidence, and perform quantitative analysis to compare the net benefits of C-V2X with those of IEEE 802.11p, with a focus on deployment in Europe
There were three main elements to the study

1. Conduct primary research on C-V2X deployment
 - We interviewed 5GAA member companies, to gather evidence on planned C-V2X deployment, business models and cost assumptions

2. Consider qualitative evidence
 - We gathered published evidence about C-V2X deployment (and its evolution to 5G) in Europe, including trials, deployment plans, potential business cases and socio-economic benefits

3. Develop cost–benefit analysis
 - We developed scenarios and a cost–benefit model comparing C-V2X with IEEE 802.11p for V2V/I/N/P deployment in Europe
Context for the study

Research findings

Cost–benefit analysis

Results

About Analysys Mason and SBD Automotive
C-V2X benefits include its evolution path to 5G, and potential for rapid economies of scale [1]

Future-proof, providing a progression to 5G

C-V2X will evolve to facilitate new capability in the 5G era. In the meantime, the dual modes of LTE C-V2X meet all the requirements of the automotive industry.

Supports V2P communication

V2P may be needed for fully automated cars in urban areas. Although there are doubts that V2P can be achieved with IEEE 802.11p, V2P can be enabled using LTE smartphones (either via Uu, or PC5).

A wide range of business models are possible

Business models leveraging the multiple modes of C-V2X could include infotainment, traffic information, real-time mapping, telematics and data analytics. Network-based data analytics opportunities also exist (using data gathered via both Uu and PC5 interfaces).
C-V2X benefits include its evolution path to 5G, and potential for rapid economies of scale [2]

Economies of scale will develop more rapidly

Many automotive OEMs believe C-V2X will be less expensive to implement than IEEE 802.11p (and cheaper than a combination of IEEE 802.11p for V2V, plus cellular for V2N)

V2V and V2N modules can be combined in a single C-V2X chipset

This same integration between V2V and cellular is not expected for DSRC/ITS-G5, which will need dual/multiple chipsets in vehicles compared to potential for a single C-V2X chipset
We identified that C-V2X commercialisation is imminent, with several trials underway [1]

<table>
<thead>
<tr>
<th>Deutsche Telekom (DT), Continental, Fraunhofer, Nokia Networks</th>
<th>Real-time V2N2V (<20ms latency)</th>
<th>Demonstrated on DT’s LTE network with MEC technology (Nov-15); and Nokia Networks in China (Nov-16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audi, DT, Huawei, Toyota, other automotive OEMs</td>
<td>C-V2X</td>
<td>Technical LTE-based field trial (Jul-16)</td>
</tr>
<tr>
<td>Audi, Ericsson, Qualcomm, SWARCO Traffic Systems, University of Kaiserslautern</td>
<td>C-V2X</td>
<td>Formed Connected Vehicle to Everything of Tomorrow (ConVeX) consortium (Jan-17) to demonstrate C-V2X (3GPP Release 14)</td>
</tr>
<tr>
<td>Ericsson, BMW, Deutsche Bahn, DT, Telefónica Deutschland, Vodafone, TU Dresden 5G Lab Germany, Federal Highway Research Institute (BASt), Federal Regulatory Agency (BNetzA)</td>
<td>C-V2X</td>
<td>Formed 5G-Connected Mobility consortium (Nov-16) to develop real-world application environment for 5G-based C-V2X</td>
</tr>
<tr>
<td>Vodafone, Bosch, Huawei</td>
<td>C-V2X (direct V2V)</td>
<td>LTE-based trial (Feb-17); aims to demonstrate very low latency, and differences from IEEE802.11 solutions</td>
</tr>
</tbody>
</table>
We identified that C-V2X commercialisation is imminent, with several trials underway [2]

<table>
<thead>
<tr>
<th>Research findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Towards 5G’ partnership (Ericsson, Orange, PSA Group, Qualcomm)</td>
</tr>
<tr>
<td>UK Connected Intelligent Transport Environment (Vodafone, Jaguar LandRover)</td>
</tr>
<tr>
<td>National Intelligent Connected Vehicle Testing Demonstration Base, Shanghai (China Mobile Communications, SAIC Motor, Huawei)</td>
</tr>
<tr>
<td>Michigan, USA (Ford Motor Company, Qualcomm)</td>
</tr>
<tr>
<td>5G showcase trials, South Korea (LG Electronics, Qualcomm)</td>
</tr>
<tr>
<td>San Diego, Regional Proving Ground (AT&T, Ford, Nokia, Qualcomm, supported by the San Diego Association of Governments)</td>
</tr>
</tbody>
</table>
Context for the study

Research findings

Cost–benefit analysis

Results

About Analysys Mason and SBD Automotive
We modelled four scenarios, capturing different V2V/I technology choices

| Scenario 1: Base case | • Automotive OEMs implement V2X in different timeframes, with some adopting IEEE 802.11p for V2V/I and others C-V2X
• With limited incentive to replace roadside infrastructure, V2I is delayed (but C-V2X uses V2N) |
| Scenario 2: 2020 EC mandate on V2V/V2I (11p) | • We assume that an EC mandate for C-ITS services to be supported in all new vehicle types from 2020 drives initial adoption of IEEE 802.11p
• V2I requires extensive roadside infrastructure upgrades |
| Scenario 3: 2023 EC mandate on V2V/V2I (PC5) | • An EC mandate for support of C-ITS services in new vehicle types in 2023 rather than 2020 allows PC5 to develop, and automotive OEMs adopt this for V2V/V2I
• V2I requires roadside infrastructure upgrades, but synergies within C-V2X (Uu) are exploited |
| Scenario 4: Equitable 5.9GHz use | • Similar to Scenario 1 we assume automotive OEMs make different technology choices for V2V/I, but with higher PC5 adoption due to greater certainty on spectrum access |
We estimated C-V2X benefits using inputs on vehicles sold, take-up and unitary V2X benefit

In-vehicle systems take-up

- # of vehicles in use/sold in EU per year
- % of vehicles sold addressable by V2X
- % of vehicles sold fitted with V2X systems
- Vehicles sold by vehicle bundle segment
- Vehicles sold by service bundle + technology

Unitary benefits

- % impact by service bundle per vehicle by category of benefits
- Monetary value of impact by category of benefits
- Total impact by category of benefits by technology
- Total benefits by category of benefits by technology
- Total benefits by technology
V2X costs by technology are based on unit costs & timetable for infrastructure/in-vehicle roll-out
Services represented in the model include warning, information and actuation/automation

<table>
<thead>
<tr>
<th>V2V</th>
<th>V2P</th>
<th>V2I/V2N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not pass warning</td>
<td>Vulnerable road user protection</td>
<td>In-vehicle speed limits</td>
</tr>
<tr>
<td>Traffic jam ahead warning</td>
<td></td>
<td>In-vehicle signage</td>
</tr>
<tr>
<td>Slow or stationary vehicle warning</td>
<td></td>
<td>Probe vehicle data</td>
</tr>
<tr>
<td>Cooperative collision warning</td>
<td></td>
<td>Shockwave damping</td>
</tr>
<tr>
<td>Emergency brake light</td>
<td></td>
<td>Traffic signal priority requests</td>
</tr>
<tr>
<td>Hazardous location notification</td>
<td></td>
<td>Green light optimal speed advisory (GLOSA)</td>
</tr>
<tr>
<td>CACC</td>
<td></td>
<td>Traffic information for smarter junction management (e.g. signal violation, traffic management)</td>
</tr>
<tr>
<td>(cooperative adaptive cruise control)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active braking</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Warning

Actuation

Information
Assumptions on per-vehicle benefits of each C-ITS service were estimated from study inputs

<table>
<thead>
<tr>
<th>Examples of services</th>
<th>Safety</th>
<th>Fuel consumption/ emissions</th>
<th>Traffic efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urban</td>
<td>Rural</td>
<td>Motorway</td>
</tr>
<tr>
<td>Do not pass warning</td>
<td>–</td>
<td>3%</td>
<td>–</td>
</tr>
<tr>
<td>Traffic jam ahead</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Slow/ stationary vehicle</td>
<td>7%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Green Light Optimal Speed Advisory</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Contents

Context for the study
Research findings
Cost–benefit analysis

Results

About Analysys Mason and SBD Automotive
Benefits are highest in the equitable use scenario (4), due to V2V actuation + increased penetration.
Costs are highest in Scenario 2, where the largest deployment of RSUs is envisaged.

- **Scenario 1**: Base case
- **Scenario 2**: EC mandate in 2020 / 11p
- **Scenario 3**: EC mandate in 2023 / PC5
- **Scenario 4**: Equitable use of 5.9GHz scenario
RSU costs are the lowest in scenarios 1 and 4 where cellular infrastructure is re-used.

The re-use of cellular infrastructure could provide cost savings of up to EUR5 billion.

2020-2035 cumulative RSU costs by scenario (EUR billion)
Net benefits* are highest in the equitable use scenario, using the multiple modes of C-V2X

* Net benefits = benefits – costs
Other impacts were the positive effect of C-ITS on jobs, road fatality reduction and SMEs

| Impact on jobs | We estimate that up to an additional 220,000 jobs (direct and indirect) might be created in Europe by 2030
| C-ITS could also have a positive impact on job quality |

| Reduction in road fatalities | V2P specifically aims to protect pedestrians, cyclists and motorcyclists: C-V2X is well placed to deliver these services, leading to a reduction in fatalities among vulnerable road users |

| Impact on SMEs | SMEs could play a role in C-ITS installation/operation, and could benefit from lower operating costs, higher traffic efficiency and improved fuel consumption |
In summary, C-V2X benefits appear highest when its multiple usage modes are exploited

<table>
<thead>
<tr>
<th>Multiple C-V2X modes offer flexibility and net benefit gains</th>
<th>● Roadside infrastructure upgrades can be minimised by using cellular networks for the C-V2X Uu connectivity mode</th>
</tr>
</thead>
</table>
| PC5 mode in smartphones will offer further benefits | ● The ability for vehicles without an embedded V2V interface to use smartphone connectivity (PC5, or Uu) is a key benefit of C-V2X
● PC5 in smartphones will also enable V2P |
| C-V2X technology integration can make deployment less expensive | ● C-V2X can reduce the cost of V2X/C-ITS deployment in Europe by offering cost efficiencies between its operating modes and exploiting synergies with mobile networks |
| Migration to 5G is also encouraged through C-V2X adoption | ● The automotive sector is predicted to generate among the highest economic benefits for Europe from 5G use – adopting C-V2X will facilitate the evolution to 5G |
Contents

Context for the study

Research findings

Cost–benefit analysis

Results

About Analysys Mason and SBD Automotive
Analysys Mason provides consulting and research services to the TMT industry

Our consulting services and research portfolio
SBD Automotive has provided research and consulting to the automotive industry since 1995

- Connected Car: infotainment apps | remote services | car IT | mobility | telematics
- Autonomous Car: sensors | advanced driver assistance | driver monitoring | V2X
- Secure Car: cyber security | anti-theft | risk assessments | countermeasures
Contact details

Tom Rebbeck
Head of Enterprise & IoT, Analysys Mason
tom.rebbeck@analysysmason.com

Hugues-Antoine Lacour
Consultant, Analysys Mason
hugues-antoine.lacour@analysysmason.com